20th Australasian Fluid Mechanics Conference
Perth, Australia
5-8 December 2016

Scattering Matrices, Water Wave Scattering, and Wave Energy Converters

M. H. Meylan!, H. A. Wolgamot?

!'School of Mathematical and Physical Science
The University of Newcastle
Callaghan, NSW, 2308, Australia
2Faculty of Engineering, Computing and Mathematics
University of Western Australia
35 Stirling Highway, Crawley, WA, 6009, Australia

Abstract

The scattering matrix or S-matrix is a widely used tool in many
branches of physics and engineering and it gives a simple way
to encapsulate the complex behaviour of a system which is char-
acterized by the relationship between the incident and the scat-
tered waves. It has proved to have many useful properties, for
example the poles of the S-matrix in the complex-energy plane
can be identified with bound states, virtual states or resonances.
The authors have recently developed numerical methods which
allow the analytic extension of wave scattering calculations for
cylindrical wave energy converters (WECs) into the complex
plane. We use this computational tool to investigate the poles
of the S-matrix and show that these are identified with the near-
trapped or resonant states for WECs. We give visualizations of
the S-matrix. These results, while highly theoretical, have ap-
plication in determining the wave response of WECs and could
assist in the design of optimal arrangements.

Introduction

The linear wave-structure interaction problem is one of the best
studied problems in hydrodynamics and it is the basis for nu-
merous practical applications. Generally the solution is found
by assuming the response is at a single frequency which is
considered real. However, the solution can be extended to an
analytic function of complex frequencies. Such an approach
has found recent application to wave structure interaction prob-
lem through application of the singularity expansion method,
[1, 4, 2, 6, 7, 5], although the theory can be traced back to
[10, 3].

The scattering matrix or S-matrix has wide application in
physics. It first appeared in [12] and it was developed by Werner
Heisenberg independently in the 1940s [8]. In its simplest form
the S-matrix is a unitary matrix which connects the incoming
and outgoing waves. As we will see shortly it is close to the
standard objects which are routinely calculated by engineers an-
alyzing the motion of WECs (wave energy converters).

The S-matrix is unitary which imposes the condition that the
zeros and poles must occur in complex conjugate pairs. This
in turn can lead to insights about the structure of the solution.
Most importantly the S-matrix encodes almost all the informa-
tion about the solution. We focus here on the solution for a sin-
gle cylinder. The solution method could be easily generalized to
more complicated geometries and even to multiple bodies. This
works builds on the results presented in [13].

The S-matrix is a complex function of a complex variable and it
is only recently that methods have been developed to visualize
what is essentially a four dimensional object - the study of such
visualizations is a subject in its own right, e.g. [11] . This
visualization offers an ability to appreciate the significance of
the S-matrix which was not possible previously.

We consider here the simplest model for a WEC, a truncated
cylinder which is free to move in heave only. From the sym-
metry of the body we can decompose the incident wave into
channels which correspond to separation of variables in the an-
gular coordinate. This has the effect of making the problem
particularly simple since the incoming and outgoing channels
have dimension one. We focus on the axisymmetric channel in
particular because this is the one which excites the body motion
in heave.

Theory

We non-dimensionalize so that the gravity and fluid density are
both unity, and consider a single truncated cylinder, of radius a
and draft d, free to move in heave only. The method of solution
follows from that given by [14] and the code follows from that
developed for [9].

Throughout this paper we use linear potential flow theory. Thus,

the fluid motion is represented by a velocity potential ¢, with the

sinusoidal time dependence e'® removed, which satisfies
VZp=0 (1a)

throughout the fluid (of depth /) with boundary conditions
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on the free surface.

Considering a rigid body oscillating in the absence of incident
waves, the total velocity potential may be decomposed into a
radiation potential ¢3 proportional to the complex amplitudes of
body displacement in heave x3 and the incident and diffracted
potential, i.e.

¢ =07+ 9p +x303. 2

The radiation potentials may be determined using a further
boundary condition on the surface of a moving rigid body; for
translational modes 3
M _ joons 3)
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where normal n points out of the fluid and into the body and n3
is the normal associated with the heave motion.

Integrating fluid pressures over the body surface in the standard
manner, the added mass and damping may be expressed in terms
of the radiation potentials
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where A and B are the added mass and damping respectively,
and Sp is the submerged body surface.

For the diffraction problem we need the boundary condition
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on the surface of the cylinder and obtain
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for the exciting force.

We cannot solve the problem without a further equation derived
from the motion of the body. This is given by

(—*M +C — @’A+iwB)x3 = F, (7)

where M is the body mass and C the hydrostatic restoring force.
They are given by M = nda® and C = ma?.
Solution method for a Truncated Cylinder

We decompose the potential as

N
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which satisfies equations (1) We need to solve by imposing the
appropriate condition on the surface of the cylinder. The prob-
lem is divided into an inner region, directly beneath the cylinder,
and an outer region, as shown in Figure 1.

Outer region

For r > a we can write
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where J,, etc. are Bessel functions and k;, are the solutions of
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with k, ordered with increasing size. Depth variation is given
by
Zun (2) = Ny /* cosh (ko (z+ 1)) (13)

where the normalising function is
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Inner region

The inner region potential potential is written as
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The nonhomogeneous part is given by
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0, |n|>1
where u3 is the heave velocity iwx3.

Incident Potential

The incident velocity potential for an axisymmetric incident
wave is given by
o7 = Jo(kor)Zm (z) (18)

which is also the first term in the expansion of a plane incident
wave in polar coordinates. This means that the heave response
for this incident wave is identical to the heave response for a
plane incident wave.
Matching conditions
We match the potential and its derivative on the boundary be-
neath the cylinder. That is,
1 =1 (19)

and

o =0’ (20)

onr=aand —d >z> —h.

Analytic extension to complex frequencies

We want to extend the solution analytically (i.e. as convergent
power series) for complex values of ®. The only place where
the solution depends on the frequency is the solution of the dis-
persion equation (12). We have developed a method to achieve
this so that in practice only a small modification of the method
for real frequencies is required to achieve this extension.
Scattering Matrix

The scattering matrix is the solution calculated using an incident

wave of the form H,sl)(kr). We could develop the theory for
this incident wave with little difficulty but we show here how to
calculate it from the standard incident waves J,, (kr). We assume
that the total potential is of the form

Jo(kr) + aHy" (kr) 1)
The scattering matrix S(®) is given by
H (k) + S(o)HS" (kr) (22)
We know that (by definition)
HY (k) = Jo (kr) + ¥ (kr) (23)

and
H (kr) = Jo (kr) — ¥ (kr) (24)

We can solve for the scattering matrix by equating the two ex-
pressions

Jo(kr) +aoH" (kr) = LB (kr) + CoHP (k) (25)

which then means that
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This has solution
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The scattering matrix is therefore given by

S=142ag (28)

Results

Our code allows us to calculate all the necessary information,
and hence the scattering matrix, exactly in principle. In practice
the number of internal and evanescent modes, Q and M, must
be chosen to achieve converged results. For these calculations
we use M=Q=40.

We consider a cylinder of unit radius in water of depth & = 4.
‘We consider two values for d, d = 1 and d = 3. Figure 2 is the
case when d = 1. The top plot shows the absolute value of the
heave velocity |u3| as a function of real frequency. The large
plot underneath is a visualization of the S-matrix. This is cre-
ated using the method of [11]. The colour represents the phase
information and the hue is proportional to the logarithm of the
absolute value. We get dramatic changes in the figure near poles
and zeros. We can find the poles and zero of the S-matrix and
we mark these on the figure as well. We also have a smaller
inset plot which shows a close up of the S-matrix in the region
around the poles and zeros. Figure 3 is the same plot but for
d = 3. Comparison of the heave response and the scattering
matrix shows how strongly connected the two objects are. The
larger, deeper cylinder has a much stronger and sharper reso-
nance, which is apparent in the velocity plot and manifested in
the S-matrix plane as a smaller separation between the zero and
pole. Resonances are critical for most wave energy devices,
so the locations of the poles and zeros in the complex plane,
capturing both radiation and scattering behaviour, is of great in-
terest. However, this is by no means the only physical quantity
which is encoded in the S-matrix, and it is possible to derive
identities for the scattering problem using the understanding
generated.

Conclusions

We have shown how for a non-trivial wave scattering problem in
which there is a moving body we can define a scattering matrix
and compute its values in the complex plane. We have shown
that the behaviour in the complex plane determines the solution
for real frequencies. We believe that this method has a range of
applications and that this alternative method of looking at water
wave scattering could lead to significant insights into the system
behaviour.

Further results will be presented at the conference.
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Figure 1: Layout of the inner and outer regions relative to the
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Figure 2: The top plot shows the heave velocity |u3| as a function of real ®. The bottom plot shows the S-matrix as function of ®. The

' 0.2
values are calculated for a cylinder of radius one, with 4 =4 and d = 1. Also shown are the zero of the scattering matrix (black dot)

and the singularity of the scattering matrix (green dot). The smaller inset figure is a close up around the poles and zeros.
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Figure 3: As in Figure 2 except d = 3.




